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Abstract. The point model of a protruding stiffener in a rigid screen is suggested. This model is
formulated as the zero-range potential for the harmonic operator in Hilbert space and corresponds
to a passive dipole source.

1. Introduction

The simple models of small obstacles that reproduce the main characteristics of the scattered
fields are widely used in structural mechanics, acoustics and engineering. The main advantage
of such models is in the existence of an explicit solution that can be expressed in the form of
integrals or infinite series which makes the analysis the most simple one.

The explicit solution is possible if the homogeneity of the boundary value problem is
violated in a separate point or in a finite or periodic set of points. Classical formulation of
the ‘boundary’ conditions in a separate point is only possible if the order of the differential
operator is high enough. The inhomogeneity can be introduced in the boundary condition if
the generalized boundary conditions [1] are used. In this way all the models of point-wise
defects in thin elastic plates are formulated [2–4].

If the order of the differential operator is not high enough, the value of the solution or its
derivative in a separate point is, generally speaking, not defined and classical conditions in a
point cannot be formulated. Indeed, the classical formulation of the boundary value problem
deals with the weak solutions [5] that are fromH 1 only, and there is no embedding formH 1

to the class of continuous functions.
In that case one needs to introduce some special technique that allows the condition in a

point to be fixed. The most developed approach is based on the operator extensions theory and is
referred as the zero-range potentials technique [6]. First zero-range potentials were introduced
by Fermi in quantum mechanics and later became a popular tool in other sciences such as the
acoustics of resonators with small openings [7], diffraction by narrow slits in acoustics [8]
and electromagnetics, etc. The construction of the zero-range potential is performed in three
steps [6,9]. First the self-adjoint operator of the initial non-perturbed problem is restricted to
functions that vanish near the chosen point that will become the potential centre. This yields
the symmetric operator with some finite deficiency indices. In the second step the Neumann
technique being in the restriction of the adjoint operator to the self-adjoint allows the class
of all the zero-range potentials to be described. These zero-range potentials are formulated
by means of ‘boundary’ conditions usually setting linear relations for the coefficients of the
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local asymptotics of the solution in a vicinity of the potential centre. The matrix of these
linear relations parametrizes the zero-range potentials and is chosen at the third step of the
procedure. In the technique of the zero-range potentials there is no tool for the choice of
this matrix and some external considerations are used. Sometimes the matrix determining the
boundary conditions is defined by the singular perturbation [10,11].

The deficiency indices of the restricted harmonic operator inR2
+ are equal to(1, 1) and

the set of the zero-range potentials is one-parametric. All such zero-range potentials represent
symmetric passive sources and the scattering amplitude is symmetric with the observation
angle. The non-symmetric sources cannot be present in the problems if the deficiency indices
are not increased. This can be achieved if instead ofL2, a wider in some sense space is
used. These are spaces with indefinite metrics [12–14]. For the current state of the zero-range
potential technique see [16].

Another approach is used in this paper. Here the model of the zero-range potential is
constructed in a Hilbert space. We consider the problem of scattering by a protruding stiffener
in a rigid screen and construct the zero-range potential with asymmetric scattered field that
reproduces the scattering amplitude by the protruding stiffener in the low-frequency limit.

The approach is rather similar to that used in [15]. However, in [15] the operator is not
formulated directly, but by means of Fourier transform. Besides, the parameterα that specifies
the particular extension of the operator is involved in the formulation of the space itself. In
this paper the parametrization is more natural.

2. Classical formulation and hints

Let the infinite rigid screeny = 0 have a protruding stiffener of heightH . The boundary value
problem that describes the diffraction by such a screen with a stiffener reads

1U(x, y) + k2U(x, y) = 0

∂U/∂y = 0 y = 0

∂U/∂x = 0 x = 0 0< y < H.

(1)

Here the time factor e−iωt is dropped and the field of acoustic pressureU is assumed to be
independent of thez coordinate. That is, problem (1) is two-dimensional.

The wave process is generated by an incident plane wave

Ui(x, y) = exp(ikx cosϕ0 − iky sinϕ0)

which produces the reflected wave

Ur(x, y) = exp(ikx cosϕ0 + iky sinϕ0)

and the scattered fieldUs which is to be found. The scattered field should satisfy the radiation
condition at infinity and the total fieldU = Ui +Ur +Us is subject to the Meixner conditions
in the points(0, 0) and(0, H).

The solution available to the author of the boundary value problem (1) belongs to Belinskiy
(for a more complicated case of the elastic screen see [17]). The scattered field forms, at a
large distance from the stiffener, the outgoing cylindrical wave

Us ∼
√

2π

kr
eikr−iπ/49(ϕ, ϕ0) r → +∞ (2)

with the scattering pattern

9(ϕ, ϕ0) = i

2
(kH)2 cosϕ cosϕ0

{
1 +

(kH)2

16

[
1− 4 log

(
kH

4

)
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−4CE + cos(2ϕ) + cos(2ϕ0)

]
+ O((kH)4 log(kH))

}
. (3)

HereCE is the Euler constant.
The goal of this paper is to suggest the point model of the protruding stiffener that will

reproduce the pattern9(ϕ, ϕ0) in the principal order bykH . It is evident from (3) that the
passive point source should have the directivity given by the cosine of the polar angleϕ. That
directivity corresponds to the point dipole source. Thus, formally, the Helmholtz equation in
(1) gains the right-hand side

u0δ
′(x)δ(y) (4)

with some unknown amplitudeu0. This amplitude depends on the incident field in the vicinity
of the origin and to get the factor cosϕ0 one should take the derivative of the incident field. The
rigorous formulation of the operator with a zero-range potential corresponding to the dipole
source (4) is formulated below.

3. Zero-range potentials

3.1. The space

As it is noted above, the spaceL2 does not allow the dipole sources to be introduced. Thus,
another space should be used. This space should include the functions that solve the Helmholtz
equation with the right-hand side given in (4). Besides, the functions from the domain of the
harmonic operator in that space should be fromC1, that is their derivative should be defined
at the origin.

Let us introduce the functionsG0 andG1 that solve the equations

(−1 + β2)G0(x, y) = −δ′(x)δ(y)
and

(−1 + α2)G1(x, y) = −G0(x, y).

The local asymptotics of these functions are

G0 ∼ 1

π

x

r2
+ β2x logr

2π
+ χ0x + · · · r → 0

G1 ∼ x logr

2π
+ χ1x + · · · r → 0

where

χ0 = β2

2π
(log(β

/
2) +CE − 1) χ1 = 1

2π

(
log(β

/
2) +CE − 1

2

)
.

Let us associate with the functionU(x, y) the pairU ≡ (U(x, y), u0) by the following
rule:

U(x, y) = U(x, y)− u0 G0(x, y) ∈ H 1(R2
+) u0 ∈ C. (5)

One can easily check that for any fieldU(x, y) of the dipole source such a representation is
possible.

The pairsU are considered as the elements of the spaceH = H 1(R2
+) +C with the scalar

product

(U,V)H = (U, V ) + κ2(∇U,∇V ) + κ3u0v0 + γ1{(U, v0G1) + (u0G1, V )}
+γ2{(∇U, v0∇G1) + (u0∇G1,∇V )}. (6)
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Here theL2 scalar product of the functionsU(x, y) andV (x, y) is denoted by(U, V ). The first
three terms represent the scalar product in the spaceH 1⊕C and the last two terms introduce
interaction (non-orthogonality) of theH 1 andC components. The positive constantsκ2, κ3, γ1

andγ2 will be chosen later. However, there are some restrictions. The positive norm appears
if κ3 is large enough. Indeed the norm can be rewritten as

(U,U)H = ‖U + γ1u0G1‖2 + κ2

∥∥∥∥∇U +
γ2

κ2
u0∇G1

∥∥∥∥2

+

(
κ3− γ 2

1 ‖G1‖2 − γ
2
2

κ2
‖∇G1‖2

)
|u0|2

and one concludes that

κ3 = κ + γ 2
1 ‖G1‖2 +

γ 2
2

κ2
‖∇G1‖2 κ > 0. (7)

Also, it is not difficult to check that the triangle rule is satisfied by the scalar product (6).
Thus, the spaceH is a Hilbert one.

3.2. Harmonic operator

The harmonic operatorA′ in the spaceH is defined on the elementsU with the functions
U(x, y) representable in the form

U(x, y) = u1G1(x, y) +Ur(x, y) (8)

whereu1 is arbitrary complex constant andUr belongs toH 3(R2
+) with Neumann boundary

condition on{y = 0}. Then

A′U ≡
(−1Ur − α2u1G1

−β2u0 − u1

)
(9)

belongs toH. One can check that this formula appears if the harmonic operator is applied
formally to the functionU(x, y) and rule (5) is applied to the result.

The operatorA′ plays the role of the operator adjoint to the restricted one in the general
scheme of [6]. It can be restricted to the self-adjoint operatorA. The singular coefficient
u0 should be dependent on the functionU(x, y). To find this dependence one considers the
boundary form of the operatorA′

(A′U,V)H − (U,A′V)H = γ2

2

(
∂Ur(0, 0)

∂x
v0 − u0

∂Vr(0, 0)

∂x

)

+
κ2

2

(
∂Ur(0, 0)

∂x
v1− u1

∂Vr(0, 0)

∂x

)
+W(u1v0 − u0v1)

+(γ1− γ2α
2)[(Ur, v0G0 + v0(α

2 − β2)G1− v1G1)

−(u0G0 + u0(α
2 − β2)G1− u1G1, Vr)]

+(1− κ2β
2 + γ2)[(Ur, v1G0)− (u1G0, Vr)]

where

W = κ3 + (α2 − β2)(γ1‖G1‖2 + γ2‖∇G1‖2).
To exclude integrals in the boundary form one lets

γ1 = γ2α
2 γ2 = κ2β

2 − 1. (10)
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Finally, the restriction that makes the operator symmetric is formulated in the form of the linear
relation

u0 +
κ2

γ2
u1 = Ã

(
∂Ur(0, 0)

∂x
+ 2Wu1

)
(11)

with arbitrary real parameter̃A.

Theorem. The operatorA is self-adjoint in the spaceH.

Proof. From the above it is evident that the operatorA is symmetric. Let us calculate the
defficiency indices. We shall compute the defficiency index for a specially chosen real value
of the spectral parameter and show that it is zero.

Consider the spectral problem

(A− λ)U = F
with negativeλ. In component it reads

−(1 + λ)Ur − (α2 + λ)u1G1 = F
−(β2 + λ)u0 − u1 = f0.

Besides,U should belong to the domain ofA, i.e. satisfying condition (11). By introducing
the solutionsUf andUg (due toF,G1 ∈ H 1 andλ < 0 these solutions belong toH 3 [18])

−(1 + λ)Uf = F − (1 + λ)Ug = G1

one finds thatUr = Uf + (α2 + λ)u1Ug. The condition (11) can be rewritten as

u0 +
κ2

γ2
u1 = Ã

(
∂Uf (0, 0)

∂x
+ (α2 + λ)

∂Ug(0, 0)

∂x
u1 + 2Wu1

)
.

Together with the equation in the second component of the spectral problem this gives the
system of linear equations for the constantsu0 andu1. The determinant of this system is

Det= 1− (β2 + λ)

(
κ2

γ2
− Ã

(
2W + (α2 + λ2)

∂Ug(0, 0)

∂x

))
.

Forλ = −β2 the determinant is equal to one and the system has a solution for any right-hand
side.

That is, the deficiency index ofA for λ = −β2 is equal to zero. The operator is essentially
self-adjoint and as its domain is closed one concludes thatA∗ = A. �

3.3. Parametrization of the zero-range potentials

Condition (11) is difficult to check and for the zero-range potentials for differential operator the
restrictions are usually formulated for the coefficients of the local asymptotics of the function.
The asymptotics, in the case of point dipole source, have the form

U(x, y) ∼ a x

πr2
+ b + c

x logr

2π
+ dx + · · · r → 0. (12)

The componentu0 of the elementU coincides witha in (12) and the componentU(x, y) has
the asymptotics

U(x, y) ∼ b + (c − β2a)
x logr

2π
+ (d − χ0a)x + · · · r → 0.
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Here one finds the regular part and the coefficientu1

Ur(x, y) ∼ b + (d − χ1c − (χ0 − β2χ1)a)x + · · · u1 = c − β2a.

Condition (11) can be rewritten for the coefficientsa, b, c, d in the form

a − κ2c = A(d +Zc) (13)

whereA differs fromÃ in a real multiplier and

Z = β2κ2

4π
+ 2

W

γ2
− χ1.

It is possible to choose the parameters of the scalar product in such a way that the formulae
simplify. NamelyW = κ if

κ2α
2 = 1. (14)

The quantityZ can be made equal to zero. For example, assuming thatβ is large, so that
log(β/2) > 3

2 − CE and taking

γ2 = 1 and κ = 1

4π

(
log(β/2) +CE − 3

2

)
(15)

yieldsZ = 0. Besides, ifβ → +∞, thenκ2 → +0. Below, we assume that the parameters
are taken as in (14) and (15) and in accordance with conditions (10). Still, that gives some
arbitrariness in the choice ofκ2 and this will be discussed below. In that case the ‘boundary’
condition in the potential centre is formulated as

a + κ2c = Ad. (16)

3.4. Choice of the parameter

The parameterA in (16) should be chosen so that the scattering pattern in the problem of
scattering by the zero-range potential coincides in the highest order ofkH → 0 with the
expression (3). The problem of scattering by the zero-range potential is formulated as follows.
One considers the spectral problem

AU = k2U

for the functionsU(x, y) = U(x, y) + u0G0(x, y) that have the asymptotics (12) with the
coefficients satisfying the condition (16) whereA is fixed. It is easy to find that the solution
of the problem of scattering by the zero-range potential has the form

U(x, y) = Ui(x, y) +Ur(x, y) + a

(
i

2
H
(1)
1 (kr)k cosϕ −G0(x, y)

)
u0 = a.

The amplitudea is chosen from condition (16). The coefficientd in the asymptotics (12) of
the fieldU(x, y) depends on the incident field and on the amplitudea, by the formula

d = 2ik cosϕ0 − a k
2

4π
(2 log(k/2) + 2CE − 1− iπ)

and

c = −ak2.
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Finally, one finds

a = 2ikA cosϕ0

1− k2κ2 + k2 A
4π (2 log(k/2) + 2CE − 1− iπ)

(17)

and

90(ϕ, ϕ0) = −a k cosϕ

2π

≈ − i

π
Ak2 cosϕ cosϕ0. (18)

Here we assumedκ2� 1 and neglected the terms proportional tok2κ2 andk2A. This allows the
parameterA to be chosen independently of the incident wave, its wavenumberk and incidence
angleϕ0:

A = −π
2
H 2. (19)

Formulae (17) and (18) are exact and the model of the zero-range potential leads to the
field that exactly satisfies the reciprocity principle and the optical theorem [19] which follows
from the theory of self-adjoint operators.

4. Conclusion

The constructed operator model of the scattering by a protruding stiffener simplifies the analysis
of the scattering effects. In particular, it is easy to consider the periodic set of such stiffeners
and look at the dynamics of the wave processes.

The main difference of this approach with respect to the scheme of [6–9] is in the use
of a specific space where the operator is considered. The necessity to introduceδ′-sources
forced the two-component space to be used. The derivative of the function from the domain
of the operator should be defined in the potential centre and this requires the spaceH 1 to
be chosen for the componentU(x, y). A different approach based on the use of spaces with
appropriate weight is developed in [20]. However, an operator pencil is constructed there, that
is the spectral parameter appears in the matrix of the condition similar to (18).

However, our approach leads to cumbersome constructions and its modification for the
analysis of the scattering by elastic screens [21,22] appears difficult due to the use of the space
H 1 instead of the usualL2. The final formula (16) allows the coefficientκ2 to be taken equal
to zero, however, this means that the other parameters should be taken as infinitely large. If
the conditions (14) and (15) are assumed, then takingκ2 = 0 yieldsβ2 = +∞. In contrast,
takingβ as fixed and rejecting the conditions (15) forcesκ to be taken as infinitely large for
the norm to be positive (see (7)). Finally, if the positiveness of the norm is not required andκ

is taken to be finite, the spaceH becomes, with indefinite metrics, similar to [12–14].
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